Harmonic functions on hermitian hyperbolic spaces
نویسندگان
چکیده
منابع مشابه
On characterizations of hyperbolic harmonic Bloch and Besov spaces
We define hyperbolic harmonic $omega$-$alpha$-Bloch space $mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and characterize it in terms of $$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}},$$ where $0leq gammaleq 1$. Similar results are extended to little $omega$-$alpha$-Bloch and Besov spaces. These obtained...
متن کاملHarmonic functions on hyperbolic graphs
We consider admissible random walks on hyperbolic graphs. For a given harmonic function on such a graph, we prove that asymptotic properties of non-tangential boundedness and non-tangential convergence are almost everywhere equivalent. The proof is inspired by the works of F. Mouton in the cases of Riemannian manifolds of pinched negative curvature and infinite trees. It involves geometric and ...
متن کاملHarmonic Morphisms, Hermitian Structures and Symmetric Spaces
[A] M. Svensson, On holomorphic harmonic morphisms, Manuscripta Math. 107 (2002), 1–13. [B] M. Svensson, Harmonic morphisms from even-dimensional hyperbolic spaces, Math. Scand. 92 (2003), 246–260. [C] M. Svensson, Holomorphic foliations, harmonic morphisms and the Walczak formula, J. London Math. Soc. 68 (2003), 781–794. [D] M. Svensson, Harmonic morphisms in Hermitian geometry, J. Reine Angew...
متن کاملHarmonic Functions on the Real Hyperbolic Ball I : Boundary Values and Atomic Decomposition of Hardy Spaces
Abstract. In this article we study harmonic functions for the Laplace-Beltrami operator on the real hyperbolic space Bn. We obtain necessary and sufficient conditions for this functions and their normal derivatives to have a boundary distribution. In doing so, we put forward different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball Bn. ...
متن کاملHarmonic Maps between 3 - Dimensional Hyperbolic Spaces
We prove that a quasiconformal map of the sphere S admits a harmonic quasi-isometric extension to the hyperbolic space H, thus confirming the well known Schoen Conjecture in dimension 3.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hiroshima Mathematical Journal
سال: 1973
ISSN: 0018-2079
DOI: 10.32917/hmj/1206137443